3.1.51 \(\int \frac {x}{\sqrt {a x^2+b x^3+c x^4}} \, dx\)

Optimal. Leaf size=71 \[ \frac {x \sqrt {a+b x+c x^2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} \sqrt {a x^2+b x^3+c x^4}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1914, 621, 206} \begin {gather*} \frac {x \sqrt {a+b x+c x^2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} \sqrt {a x^2+b x^3+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[a*x^2 + b*x^3 + c*x^4],x]

[Out]

(x*Sqrt[a + b*x + c*x^2]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*Sqrt[a*x^2 + b*x^3 +
 c*x^4])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1914

Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[(x^(q/2)*Sqrt[a
 + b*x^(n - q) + c*x^(2*(n - q))])/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)], Int[x^(m - q/2)/Sqrt[a + b*x^(n - q) +
 c*x^(2*(n - q))], x], x] /; FreeQ[{a, b, c, m, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && ((EqQ[m, 1] &&
EqQ[n, 3] && EqQ[q, 2]) || ((EqQ[m + 1/2] || EqQ[m, 3/2] || EqQ[m, 1/2] || EqQ[m, 5/2]) && EqQ[n, 3] && EqQ[q,
 1]))

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a x^2+b x^3+c x^4}} \, dx &=\frac {\left (x \sqrt {a+b x+c x^2}\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{\sqrt {a x^2+b x^3+c x^4}}\\ &=\frac {\left (2 x \sqrt {a+b x+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {a x^2+b x^3+c x^4}}\\ &=\frac {x \sqrt {a+b x+c x^2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} \sqrt {a x^2+b x^3+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 66, normalized size = 0.93 \begin {gather*} \frac {x \sqrt {a+b x+c x^2} \log \left (2 \sqrt {c} \sqrt {a+b x+c x^2}+b+2 c x\right )}{\sqrt {c} \sqrt {x^2 (a+x (b+c x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[a*x^2 + b*x^3 + c*x^4],x]

[Out]

(x*Sqrt[a + b*x + c*x^2]*Log[b + 2*c*x + 2*Sqrt[c]*Sqrt[a + b*x + c*x^2]])/(Sqrt[c]*Sqrt[x^2*(a + x*(b + c*x))
])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.06, size = 54, normalized size = 0.76 \begin {gather*} \frac {\log (x)}{\sqrt {c}}-\frac {\log \left (-2 \sqrt {c} \sqrt {a x^2+b x^3+c x^4}+b x+2 c x^2\right )}{\sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x/Sqrt[a*x^2 + b*x^3 + c*x^4],x]

[Out]

Log[x]/Sqrt[c] - Log[b*x + 2*c*x^2 - 2*Sqrt[c]*Sqrt[a*x^2 + b*x^3 + c*x^4]]/Sqrt[c]

________________________________________________________________________________________

fricas [A]  time = 1.06, size = 129, normalized size = 1.82 \begin {gather*} \left [\frac {\log \left (-\frac {8 \, c^{2} x^{3} + 8 \, b c x^{2} + 4 \, \sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (2 \, c x + b\right )} \sqrt {c} + {\left (b^{2} + 4 \, a c\right )} x}{x}\right )}{2 \, \sqrt {c}}, -\frac {\sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{3} + b c x^{2} + a c x\right )}}\right )}{c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^3+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(8*c^2*x^3 + 8*b*c*x^2 + 4*sqrt(c*x^4 + b*x^3 + a*x^2)*(2*c*x + b)*sqrt(c) + (b^2 + 4*a*c)*x)/x)/sqr
t(c), -sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^3 + a*x^2)*(2*c*x + b)*sqrt(-c)/(c^2*x^3 + b*c*x^2 + a*c*x))/c]

________________________________________________________________________________________

giac [A]  time = 0.91, size = 37, normalized size = 0.52 \begin {gather*} -\frac {2 \, \arctan \left (\frac {\sqrt {c + \frac {b}{x} + \frac {a}{x^{2}}} - \frac {\sqrt {a}}{x}}{\sqrt {-c}}\right )}{\sqrt {-c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^3+a*x^2)^(1/2),x, algorithm="giac")

[Out]

-2*arctan((sqrt(c + b/x + a/x^2) - sqrt(a)/x)/sqrt(-c))/sqrt(-c)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 65, normalized size = 0.92 \begin {gather*} \frac {\sqrt {c \,x^{2}+b x +a}\, x \ln \left (\frac {2 c x +b +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {c}}{2 \sqrt {c}}\right )}{\sqrt {c \,x^{4}+b \,x^{3}+a \,x^{2}}\, \sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^4+b*x^3+a*x^2)^(1/2),x)

[Out]

1/(c*x^4+b*x^3+a*x^2)^(1/2)*x*(c*x^2+b*x+a)^(1/2)*ln(1/2*(2*c*x+b+2*(c*x^2+b*x+a)^(1/2)*c^(1/2))/c^(1/2))/c^(1
/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\sqrt {c x^{4} + b x^{3} + a x^{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^3+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/sqrt(c*x^4 + b*x^3 + a*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x}{\sqrt {c\,x^4+b\,x^3+a\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a*x^2 + b*x^3 + c*x^4)^(1/2),x)

[Out]

int(x/(a*x^2 + b*x^3 + c*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\sqrt {x^{2} \left (a + b x + c x^{2}\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**4+b*x**3+a*x**2)**(1/2),x)

[Out]

Integral(x/sqrt(x**2*(a + b*x + c*x**2)), x)

________________________________________________________________________________________